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Abstract— A fully developed plane velocity profile locally independent of variations in the wall temperature
is assumed to hold. Two cases are considered for the thermal boundary condition at the wall: (i) perfectly
conducting, i.e. fixed temperature, and (ii) poorly conducting, i.e. temperature proportional to temperature
gradient. The variation of wall temperature that occurs downstream of a change from condition (i) to
condition (ii) is calculated as a function of distance downstream for large values of Péclet number. Its
application to the measurement of the bulk temperature of flowing polymer streams is discussed.

NOMENCLATURE
Ai(x), Airy function (first kind);
Bi(x), Airy function (second kind);
Br, Brinkman number;
Cp, heat capacity of polymer;
f"(z), function defined by equation (32);
h, thickness of resin layer;
kp.r, thermal conductivity of polymer, resin;
A length of resin layer;
P, Laplace transform variable;
Pe, Peclet number;
7(P,n), Laplace transform of ¢(¢, );
T. temperature;
T*(y). developed temperature field;
Tw,  wall temperature;
L, dummy variable;
Ula, b,z), confluent hypergeometric function;
u, dimensionless velocity;
Ux, x-component of velocity;
X, axial coordinate;
A normal coordinate;
z, similarity variable.
Greek symbols
A, thermal conductivity ratio;
I, shear rate;
I'(x), Gamma function;
", dimensionless axial coordinate;
0, dimensionless temperature;
A, dimensionless length of resin layer;
Loy scaled Péclet number;
£, dimensionless axial coordinate;
X0- temperature gradient at £ = 0;
Pr, polymer density;
¢ stretched axial coordinate, £/Pe;
v, dimensionless excess temperature;
Yo, dimensionless excess temperature, initial

value.
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INTRODUCTION

ONE OF the more common and simple ways of
measuring the temperature of a flowing polymer stream
is by monitoring the voltage output of a thermocouple
junction placed as close as possible to the boundary
to the stream. In most cases this is a metal surface,
and control of the polymer temperature is attempted
by varying the heat input to or removal from the metal
mass concerned.

However, polymer melts are usually processed in a
very viscous state and significant temperature gradients
are built up in the flowing material (of the order of
1 to 10K/mm) because of high heat generation and
relatively low thermal conductivity. This means that the
temperature of the stagnant polymer material at the
wall may well give a poor indication of the mean
temperature of the polymer flowing through typical
processing equipment.

We examine here the effect of varying the thermal
conductivity of the wall material in the immediate
environment of the temperature sensor and show that a
pair of sensors can be used to provide information
about heat fluxes and hence about temperature
gradients in the polymer melt near the wall. This
yields improved estimates of the bulk polymer
temperature.

This analysis is given not so much because such a
system is thought to be an ideal form of flux meter
as because much equipment is already provided with
wall-mounted thermocouples. Alternative devices for
measuring the temperature of the polymer stream,
remote from the wall, directly have proved to introduce
large errors, difficult to calculate, of the order of the
temperature difference they were intended to measure.
These errors arise because sturdy metal sensors have
to be used, which distort the flow and hence the pattern
of heat generation, and also conduct heat away from
the region close to the tip.

Preliminary measurements have already shown that
differences of about [°C can be measured by using a
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pair of sensors, one with a highly conducting and one
with a poorly conducting face, placed in a plane metal
wall bounding flow of a rubber melt.

MATHEMATICAL MODEL
For simplicity we consider a plane unidirectional
flow and plane symmetry. Figure | shows the geometry
of the flow field and its boundaries. The velocity field

v, (y)
y j——® Velocity profile
y=0 F——e
Plane rigid -, Polymer melt
surface } X
ANNNNN NN N NSRS NN
i, S
Metal h N &//\ y
§o S Insutator
Thermocouple
e S
FiG. 1.

v.(v) in the polymer melt is supposed to be steady and
fully developed (independent of x) and, to the
approximation considered here, independent of small
changes in the temperature field. Thus in the neigh-
bourhood of y =0, we assume that it can be well
represented by a linear form (uniform shear).

ve(y) =Ty (1

which applies for all x. This is consistent with a
constant viscosity 1 for the polymer melt (independent
of temperature).

The temperature field is also supposed to be steady
and fully developed far from the line x = 0; for x <0
(or more strictly, for x - — ), we take

T =T*y)

where T* is determined by the local balance between
conduction and generation of heat, and by T*0) = Ty,
the (constant) temperature of the metal wall. For x > 0,
the wall boundary condition on the temperature
changes because a layer of poorly conducting material
(resin say) of thickness h is interposed between the
flowing polymer and the metal. We have shown the
resin layer to apply only for 0 < x < [, as would be the
case in practice, but for calculation purposes we shall
suppose that [ > h. The problem is to calculate the wall
temperature distribution Ty = T(x,y = 0) given that
the thermal conductivity of polymer and resin is low.
In general, the steady temperature field would be
given by
2T o7 a2

oT ore\”
ppcbvx00:~*=kp(z‘z"*?‘7)+”P(ﬁ”) (2)
ax X v ay

for the flowing melt region y > 0, and
or + PZT\) 0 (3)
O (“-‘.2 / -

for the rigid resin region —h <y <0 and 0 < x <.

The boundary condition at the (perfectly conducting)
metal boundary is
) v=0. x<0 and x>
T=T, for < v ' g (4
v=—=h 0<x</

T and k(¢T/¢y) must be continuous at the polymer
melt/resin interface y = 0.0 < x < [ e,

cT
kr('(: . )
oy

Jy=0+

’\7‘

:k42» for O<x<l. (5
[ G N

Far from the region in the melt disturbed thermally

by the resin region, the temperature field will be the

unperturbed temperature field, i.e.

T=T*y) for x—>+%x and v-> +2. (6)

By substitution into equation (2), T*(y) is seen to obey
the equation

A \2
—) =0 with T*0)=T,. (7)

For ¢ T*/¢y and T* to be bounded, certain restrictions
have to be imposed on v, (v) but we need not be more
precise at this stage because we shall only use (7) in
the neighbourhood of v =0, when (1) applies. Here
pp. Cp, yp and kp are the density, specific heat, viscosity
and thermal conductivity respectively of the polymer
melt. and kg is the thermal conductivity of the resin.

DIMENSIONLESS REPRESENTATION; HIGH
PECLET NUMBER APPROXIMATION

We usc new variables

u=r0v/Th E=xh y=wh 0=(T=Tb (8

where b~ ! is some so far undefined scale temperature.
Equations (2) and (3) then become

uy?
N—), >0, 9
(

—) —l<y<0. 0<ESA (10)

where
Th?pp C [2h%b
pe=-PPER g, PR nd A=k, (11)
kp p
The boundary conditions become
=0 & <0 d ¢>A
b= for 1! = =0 A e =Ry
L] = -1 0<igA

‘00 C0
[0],-0 = 0. Gﬁ :1¢J (13)
('7/z(:0+ n/y=0-
where
o = kgp'kp (14)
and
0—0%y) for n—ox, - +x. (15)

We have already noted that A > [. We now assert
that in most cases of interest Pe > I also [1]. This
implies that a thin thermal boundary layer develops
upstream of the line x = 0 over the surface v = 0.
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Br becomes a measure of the importance of
generation, insofar as coupling between velocity and
temperature fields is concerned. We assume

Br<il (16)
and a we take to be of order unity.
We now take a stretched variable
{ = &Pe (17

and neglect terms of order Pe™! etc. We then obtain
the much simpler equations

2
P S
&a’, én®

32

{18

0= ; <=0, 0<{<A

e 19
on? (19)
where 4 = I/h Pe, and the limiting form (1) has been
used for u. The boundary conditions are unchanged.
If we now write

= 0%+ n) (20)
then ¢ obeys the equations
qépolymer = d’poiymem:;; nz 0 (21)
0= Qresnmy —1<y<0, 04 (22)
with boundary conditions
¢resin$0 '7='* Oﬁﬁéﬁ. (l)
n=0 ¢ SVO, (=24 (11) 23)
¢’psiymer =0 n—= ail 4 (lll)
>0 (= +w (iv)
a"j’ olymer 6¢ i
¢’polymcr = ¢’resina —_pc.?ym* = 52:2 Lo
at =0, 0<{=<2 (29
where
a6*
Yo = -5—) . 25)
H Jy=0

Here the disturbance field ¢ has been separately
labelled for the polymer melt and resin regions.

In practice, the parameter / plays no part in the
solution obtained, but is included in order to reflect the
actual physical circumstances usually relevant,

From (18) we see that

0*(n) = xon—4Bry’
for  small enough, and using the definition (25).

(26)

SIMILARITY SOLUTIONS AND SERIES
EXPANSION IN {

If we write

¢resin (Cs O) = ¢0({)
then (22), using (231}, has solution

Presin = Poll ‘H?); -

@n

n<0 {28)

and

akaqsresin) = a¢g.
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We now use the similarity variable
z=n(9)1°

as is usual in such thermal boundary layer problems
in terms of which (21) becomes

(29

@poiymerzz + 322¢polymerz == gzi'{épolymerz - (39)
The boundary condition (24) then becomes
¢polymerz(0) = C1/39“3(°‘¢0—X0)- (3})
We look for a solution in the form
(bpmymcr = Z an‘(")(z}i'ﬁf3 {32}
n=1

where each of the terms ™z} are similarity solutions
of (30) obeying the relation

SR 43220 = 3n o, (33)

To satisfy the boundary condition (23iii), we shall
require

fz)—»0 as z—ox. (34)

Without loss of generality we take
f™M0=1. {35)

It can readily be shown that solutions to (33) subject
to (34) and (35) are given by

r'(l+4n)

[Pz =e"" I UB+3n3,2%)  (36)

where Ula,b,z) is the confluent hypergeometric
function as defined by Slater [2]. We are grateful to
Dr. T. J. Pedley for peinting this out to us.

It may readily be shown also that

L(1+3nI'E)

“O= T rarmre

(37

We now substitute (32) into (31) and use (37) to get

Y F S = 9“35“3@ ¥ Fn:"f~‘-—x0) (38)
n=1 =1

and, by equating successively the terms in {3, %3, ..

91/3
Fy ‘mXo (39)
9134 F, oo T23) ,
T - e @
efc.
Hence we obtain
o= 00 x0 () O FTH}
=" ( 6{r@)?
~ rd jréy
— il N/ 3 L L 41
=G F(%n+%){r(%)}+ ) o
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It is clear that this expression only converges for

9¢a® < 1 (42)
and is only useful when 9J0* = 90>¢/ Pe is significantly

smaller than unity. An alternative derivation of (41) is
given in the Appendix.

DISCUSSION
From (41) we can write the wall temperature as

oT* 9x\'Y 1
Twlo) = To+hl—=—) (=) =
¢y /o\hPe I'(%)

kg 9x\'? {T()? )
LY fcall B RIS BT
( kP<I1Pe> ol o) )

/

A particularly simple result follows if the resin is
regarded as a heat insulator, « —0. We can then
compare the contribution to Ty (x) given by the term
in x'? with the contribution to T*(y) given by the

y term in
) -

- ) /
/ WO
(‘)\' ()}

which 1s, of course, the same as (26) written in
dimensional form, and is the standard Taylor expansion
for T*.

We see that the temperature in the lowing polymer
at position y; in the unperturbed flow will be the same
as the wall temperature Ty, measured at a point

- hPe (yl 1"(%))3
X = 5 ; .

A slightly more elaborate result follows if the first two
terms in the expansion (43) for Ty — T; are used.

The question now arises as to whether realistic values
of x, h and Pe lead to values of y, representative of
the bulk polymer temperature. The following table
shows some representative values.

TXy)=To +< (44)

(45)

h Pe X I8!
(mm) (mm) {mm)
2 5000 6 0.25

It is clear that the difference in temperature measured
by a thermocouple embedded in an insulator and one
touching the metal surface will only be significant when
the temperature gradient (67*/0y), is large. However,
we carlier decided that values of 1 to 10 K/mm were
to be expected for (¢T*/2v) and so absolute differences
of order 1K in Ty are relevant. With care, such
differences should be accurately detectable.

Early experiments in rubber extruders and molds
shows this to be the case. It is, however, extremely
difficult to prove experimentally that the wall
temperature gradients predicted on the basis of the
measured temperature differences are those that
actually arise near metal walls because of the very
inaccuracies that lead to this present method. Since
the second term in equation (26) namely 4Bry?,
becomes comparable with the first, xox, within the
flow channels in question, precise evaluation of
temperature profiles within processing equipment is
probably as accurately predicted by the use of complex
theoretical models [1] as by temperature sensors that
project into flowing streams.

R. L. Lavre~NcE and J. R, AL PEARSON

REFERENCES

1. J.R.A. Pearson, Heat transfer effects in flowing polymers,
Progress in Heat and Mass Transfer, edited by W. R.
Schowalter, Vol. 5. Pergamon Press, New York (1972).

. L. J. Slater, Confluent hypergeometric functions, in
Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun, pp. 504-535. U.S. Nat.
Bureau of Standards, Applied Maths. Series No. 55,
Washington, D.C. (1964).

[ 9]

APPENDIX

The problem posed by equations (21-25) can be solved
by another method wholly equivalent to that presented in
the section on Similarity Solutions and Series Expansion
in {. The equations (21-25) can be restated using a Laplace
transform in the variable {. provided the axial measure, /.
is very large.

If

T(P.y) = J ¢(&me -FdP,
0

then the transformed relations are

dZTpo]vmer

- dﬂzﬁ *P”Tpolymer =0 for n > 0, (Al)
d? T
afzﬂ =0 for 5<0, {A2)

with conditions that Tholymer — 0 as 71 = o0, Tpolymer = Tresin
atn =0, and
dVTponmer = dTresin _

—— — Yo at

=0,
dn dy d

and 0<{<xc. (A3
The solution to equation (A1) can be expressed as a sum of
Airy functions

Tooiymer (P 1) = adi(P'y)+bBI{P' y) for 720, (A4)

Boundedness as 1 — « requires b = 0. The solution in the
lower half plane provides a solution linear in #. The heat
flux balance (condition A3) dictates a solution

31T(d)xo  Ai(Py)
Tpolymcr(Pq n=- 0 e ——— for n=z0
P AN
P .
3G (A3)

using
Ai(0)=37F3T@3), AI0) = 37T,

Inversion can be readily accomplished noting that

C+ia: Ai 31,'3 g
J (Pv)ehdP = - f
coin P réra@)

(L)

N

e dr. (A6)

The inversion obtained after using result (A6), the con-
volution theorem, and expanding in powers of x yields the
solution

bl = ot 5 I (T
et T Fr@) S ¥ @) Thk+d)

x J;(th)(k—zm J‘X
0 e
()

As n — 0, we can recover the result of equation (41) since

j\(g—rvk‘m dzf e~ dg
0 4]

e dgdr. (A7)

4
I'(3) v+ 13

T Gkt h
so that
0D Z (=D THY I(d
¢ 0 vmer(é‘s O) = o —*<-¥) __3 3\ki3
peb r3) kZO FIATEY Tldk+%H (@0
(A8)
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MESURES DE TEMPERATURE A L’AIDE DE THERMOCOUPLES EN PAROI POUR UN
ECOULEMENT DE POLYMERE FONDU--I1. THEORIE

Reéesume —On suppose réalisé un profil de vitesse plan établi localement indépendant des variations de

la température de paroi. Deux cas sont considérés pour les conditions aux limites thermiques sur la

paroi: (i) paroi parfaitement conductrice c’est a dire température fixée et (i) paroi faiblement conductrice,

c’est a dire température proportionnelle au gradient de température. Les variations de température de

paroi qui se produisent en aval d’un changement de la condition (i} a la condition (ii) sont évaluées en

fonction de la distance aval, pour des valeurs élevées du nombre de Péclet. L’application a la mesure
de la tempeérature moyenne d’écoulements de polymeres est discutee.

TEMPERATURMESSUNG DURCH WANDTHERMOELEMENTE AN
POLYMERSCHMELZFLUSSEN. I—-THEORIE

Zusammenfassung—Ein voll ausgebildetes ebenes Geschwindigkeitsprofil, das ortlich unabhédngig von

Anderungen der Wandtemperatur ist, wird vorausgesetzt. Fiir die Randbedingungen an der Wand

werden zwei Fille betrachtet: (i) vollkommene Leitung, d.h. feste Temperatur; und (ii) schlechte Warme-

leitung, d.h. Temperatur proportional dem Temperaturgradienten. Die Anderung der Wandtemperatur,

die sich ergibt bei einer Anderung der Randbedingung (i) zur Randbedingung (ii) wird als Funktion des

Abstandes in Stromungsrichtung fiir grole Werte der Peclet-Zahl berechnet. Die Anwendung auf
Messungen der Mitteltemperatur von Polymerstromen wird diskutiert.

W3MEPEHUE TEMIIEPATYPLI B [TOTOKE PACIIJIABJJEHHOI'O MMOJIMMEPA
C NOMOIIBIO BMOHTUPOBAHHBIX B CTEHY TEPMOITIAP — 1. TEOPUA

Annotamus — JlenaeTcs qOMylieHHE O NOJHOCTHIO PAa3BUTOM IUIOCKOM NPOGHIIE CKOPOCTH, JIOKAILHO
HE3aBUCHMOM OT HM3MEHEHHH TeMIepaTypbl cTeHKH. PaccMaTpHBarOTCA OBa Clyyas TEMIOBOTrO
FpaHUYHOro yciosus Ha cteHke: (1) Cnyyait abcomoTHO npoBoAsLeH CTEHKH, T. €. KOr4a TeMnepa-
Typa CTeHKH MOCTOsIHHA W (2) ciyyail IJIoX0 MPOBOASALIEH CTEHKH, T. €. KOTAa TeMIepaTypa CTEHKH
MporopunoHanbHa TEMIlEpaTypHOMY FpaaneHTy. MaMeHeHMe TeMnepaTyphl CTEHKH BHU3 1O TIOTOKY
npu nepexode oT ycioBus (1) xk ycnoBHIo (2) paccUMTLIBAETCSl KaK QYHKUHMS PACCTOAHMS BHHU3 IO
noToky nss 6onbliux yucen [ekne. ObcyxaaeTcs HCNONb30BAHKE ITHX PE3YILTATOB AJIS U3MEPEHUS
CpeaHe-MacCOBOHM TeMIepaTyphl MOTOKOB MOJMUMEDA.

905



