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Abstract-A fully developed plane velocity profile locally independent of variations in the wall temperature 
is assumed to hold. Two cases are considered for the thermal boundary condition at the wall: (i) perfectly 
conducting, i.e. fixed temperature, and (ii) poorly conducting, i.e. temperature proportional to temperature 
gradient. The variation of wall temperature that occurs downstream of a change from condition (i) to 
condition (ii) is calculated as a function of distance downstream for large values of P&let number. Its 

application to the measurement of the bulk temperature of flowing polymer streams is discussed 
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NOMENCLATURE 

Airy function (first kind); 

Airy function (second kind); 
Brinkman number; 
heat capacity of polymer; 

function defined by equation (32); 

thickness of resin layer; 
thermal conductivity of polymer, resin; 
length of resin layer; 
Laplace transform variable; 
Peclet number; 

Laplace transform of 4(<, q); 
temperature; 
developed temperature field; 

wall temperature; 
dummy variable; 

V(a, b, 4, confluent hypergeometric function; 

4 dimensionless velocity; 

0x3 x-component of velocity; 

X, axial coordinate; 

J’. normal coordinate; 

Z, similarity variable. 

Greek symbols 

2, thermal conductivity ratio; 

i‘, shear rate; 

r(x), Gamma function; 

?I? dimensionless axial coordinate; 

0, dimensionless temperature; 

A, dimensionless length of resin layer; 

i”, scaled P&let number; 

r, dimensionless axial coordinate; 

X0, temperature gradient at 5 = 0; 

PP, polymer density; 

i, stretched axial coordinate, t/Pe; 

;;, 

dimensionless excess temperature; 
dimensionless excess temperature, initial 

value. 

*On leave from Department of Chemical Engineering, 
University of Massachusetts, Amherst, MA 01002, U.S.A. 

INTRODUCTION 

ONE OF the more common and simple ways of 

measuring the temperature of a flowing polymer stream 
is by monitoring the voltage output of a thermocouple 
junction placed as close as possible to the boundary 
to the stream. In most cases this is a metal surface, 

and control of the polymer temperature is attempted 
by varying the heat input to or removal from the metal 
mass concerned. 

However, polymer melts are usually processed in a 

very viscous state and significant temperature gradients 

are built up in the flowing material (of the order of 
1 to lOK/mm) because of high heat generation and 

relatively low thermal conductivity. This means that the 
temperature of the stagnant polymer material at the 
wall may well give a poor indication of the mean 
temperature of the polymer flowing through typical 
processing equipment. 

We examine here the effect of varying the thermal 
conductivity of the wall material in the immediate 
environment of the temperature sensor and show that a 

pair of sensors can be used to provide information 
about heat fluxes and hence about temperature 

gradients in the polymer melt near the wall. This 
yields improved estimates of the bulk polymer 

temperature. 
This analysis is given not so much because such a 

system is thought to be an ideal form of flux meter 
as because much equipment is already provided with 
wall-mounted thermocouples. Alternative devices for 
measuring the temperature of the polymer stream, 
remote from the wall, directly have proved to introduce 
large errors, difficult to calculate, of the order of the 
temperature difference they were intended to measure. 
These errors arise because sturdy metal sensors have 
to be used, which distort the flow and hence the pattern 
of heat generation, and also conduct heat away from 
the region close to the tip. 

Preliminary measurements have already shown that 
differences of about 1°C can be measured by using a 
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pair of sensors. one with a highly conducting and one 
with a poorly conducting face, placed in a plane metal 
wall bounding flow of a rubber melt. 

MATHEMATICAL MODEI 

For simplicity we consider a plane unidirectional 
flow and plane symmetry. Figure I shows the geometry 
of the flow field and its boundaries. The velocity field 

y=o 
prne&q id 

/ ‘Thermocouple 

FIG. I. 

o,(y) in the polymer melt is supposed to be steady and 
fully developed (independent of s) and, to the 
approximation considered here, independent of small 
changes in the temperature field. Thus in the neigh- 
bourhood of _r = 0, we assume that it can be well 
represented by a linear form (uniform shear). 

which applies for all X. This is consistent with a 

constant viscosity tlP for the polymer melt (independent 
of temperature). 

The temperature field is also supposed to be steady 
and fully developed far from the line s = 0; for x < 0 
(or more strictly, for x --t - 30), we take 

where T* is determined by the local balance between 

conduction and generation of heat. and by T*(O) = To, 
the (constant) temperature of the metal wall. For x > 0. 
the wall boundary condition on the temperature 
changes because a layer of poorly conducting material 
(resin say) of thickness II is interposed between the 
flowing polymer and the metal. We have shown the 
resin layer to apply only for 0 Q .X < 1. as would be the 
case in practice, but for calculation purposes we shall 
suppose that I >> h. The problem is to calculate the wall 
temperature distribution Tu = T(s. 1 = 0) given that 
the thermal conductivity of polymer and resin is low. 

In general, the steady temperature field would be 
given by 

for the flowing melt region J > 0, and 

(3) 

for the rigid resin region -II<.I’<O and O<.Y</. 

The boundary condition at the (perfectly conducting) 
metal boundary is 

7’ and k(i7,i~) must be continuous at the polymei- 

melt/resin interface I‘ = 0. 0 < .v d I i.e. 

Far from the region in the melt disturbed thermally 
by the resin region, the temperature field will be the 

unperturbed temperature field. i.e. 

T = T*(,r) for -v--t + x and j’+ + 7 (6) 

By substitution into equation (?I, 7*()x) is seen to obey 

the equation 

For i7‘* i,,and 7* to be bounded, certain restrictions 

have to be imposed on i:,(r) but we need not be more 
precise at this stage because we shall only use (7) in 
the neighbourhood of !’ = 0, when (I) applies. Here 
/J,,, Cl,, r7,, and !iy are the density, specific heat, viscosity 
and thermal conductivity respectively of the polymer 
melt. and li, is the thermal conductivity of the resin, 

DI>lENSIONLESS REPRESENTATIOh; HIGH 
PtCLET UL’MBER .APPROXI~I.~TIOU 

We USC new variables 

II = r,.:t/1, ; = .X II. ‘7 = J-:/I. 0 = (T- -&,)b (8) 

where h- ’ is some so far undefined scale temperature. 
Equations (2) and (3) then become 

where 

The boundary conditions become 

f)=O for 
(‘1 =o < ~0 and < > A 

I,,= -1 O<<<A 
(13) 

[U],,=” = 0. (13) 

where 

and 

cc=k,k I’ (14) 

0 + O*(u) for r7 + X. < + +- x. (15) 

We have already noted that A s I. We now assert 
that in most cases of interest Pe :,> I also [I]. This 
implies that a thin thermal boundary layer develops 
upstream of the tine .Y = 0 over the surface 1’ = 0. 
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Br becomes a measure of the importance of We now use the similarity variable 

generation, insofar as coupling between velocity and 
temperature fields is concerned. We assume 

z = 1(9[)_ ‘!3 (29) 

Br C 1 
(16) 

as is usual in such thermal boundary layer problems 
in terms of which (21) becomes 

and c1 we take to be of order unity. 
We now take a stretched variable 

; = CyPe (17) The boundary condition (24) then becomes 

and neglect terms of order Fe-’ etc. We then obtain 4 polymerr(0) = 5”39”3(M0 -x0). (31) 

the much simpler equations We look for a solution in the form 

(321 

(191 where each of the termsf’“)(z) are similarity solutions 
of (30) obeying the relation 

where i = l/h Pe, and the limiting form (1) has been 
used for u. The boundary conditions are unchanged. 

fin)+ 3~2~‘“’ z. 3n $‘“’ zz z (33) 

If we now write To satisfy the boundary condition (23iii), we shall 

@ = e*(r)+ #(6 rl) (20) require 

then Cp obeys the equations f’“)(z) --* 0 as z+L. (34) 

~#~~I~~~~ = #polymer,,,~; rl a 0 (211 

0 = dtrermris; - I < rr d 0, 0 < i G 1 (22) 
Without loss of generality we take 

with boundary conditions 
J”“)(O) = 1 . (35) 

#),,,i,=O ?f= -1 O< (<A 

( -$ 0, ( >/ 2 (ifl 
It can readily be shown that solutions to (33) subject 
to (34) and (35) are given by .I 

#polYner all < (iii) 
(23) 

[-&CC 
f(“)(z) = ewz3 I-(1 +$n) 

(iv) 
~ C$+:n, -_5,23) 

l-(+1 
(36) 

4 po,ymer = Qlresin, 

where 

where U(a,b, z) is the confluent hypergeometric 
function as defined by Slater [2]. We are grateful to 

at q = 0, 0 < < < R (24) Dr. T. J. Pedley for pointing this out to us. 
It may readily be shown also that 

Here the disturbance field (b has been separately 
labelled for the polymer melt and resin regions, 

In practice, the parameter 3. plays no part in the 
We now substitute (32) into (31) and use (37) to get 

solution obtained, but is included in order to reflect the 
actual physical circumstances usually relevant. 

i ~“~“~(0)~3 = 9’!3j’:3p f F*s”.“-x”j (38) 
“= 1 ri= 1 

From (18) we see that and, by equating successively the terms in iy1,‘3, [z’3,. . . 
Q*(v) = x0 v -4Br v2 i26) 9113 

for 11 small enough, and using the definition (25). F1 =---x0 
r(:) 

(39) 

SIMILARITY SOLUTIONS AND SERIES 
EXPANSION IN [ 

If we write 

&S,” (LO) = 40 (0, 

then (22), using (23i), has solution 

&Ml = #o(l i-i?); - 1 < tl < 0 

and 

9%F 
Fz=d= - 

38x0 r%, 
x(:)39* 3. 

(40) 

etc. 
(27) 

Hence we obtain 
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It is clear that this expression only converges for REFERENCES 

9ja3 < 1 (4.2) 1. J. R. A. Pearson, Heat transfer effects in flowing polymers. 

and is only useful when 9ja” = 9a’QPe is significantly 
Progress ill Heat and Mass Transfer, edited by W. R. 
Schowaher, Vol. 5. Pergamon Press, New York (1972). 

smaller than unity. An alternative derivation of (41) is 2. L. J. Slater, Confluent hypergeometric functions, in 

given in the Appendix. Handhook yf’ Mathematical Functions, edited by M. 
Abramowitz and I. A. Stegun, pp. 5044535. U.S. Nat. 

DISCUSSION Bureau of Standards, Applied Maths. Series No. 55. 

From (41) we can write the wall temperature as 
Washington, D.C. (1964). 

APPENDIX 

The problem posed by equations (21-25) can be solved 
by another method wholly equivalent to that presented in 
the section on Similarity Solutions and Series Expansion 
in [. The equations (21-25) can be restated using a Laplace 
transform in the variable ;. provided the axial measure. i, 

A particularly simple result follows if the resin is is very large 

regarded as a heat insulator, a +O. We can then 
If 

compare the contribution to Tw(x) given by the term UP, t/l = 

in s' 3 with the contribution to T*(J,) given by the 1 
I 

4(i,p))e--“dP 
0 

J term in 
then the transformed relations are 

d2 Tpo~ynei 
d# 

- f'vTpoiymer = 0 for 1 > 0, (Al) 

whtch IS. of course, the same as (26) written in d2Ls,, 
---z- = 0 for ‘1 < 0. 

dr) 
(A3 

dimensional form, and is the standard Taylor expansion 

for T*. with conditions that Tpolymer --t 0 as 7 + cc, Tpolymer = T,,,,, 

We see that the temperature in the flowing polymer at t) = 0. and 

at position !‘I in the unperturbed flow will be the same dTpoiymer _ dT,e,,, ____ 
as the wall temperature Tw measured at a point dv 

-a--~o at q=O. 
drl 

and 0 < ; < r:. (A3) 

(45) The solution to equation (Al) can be expressed as a sum of 
Airy functions 

A slightly more elaborate result follows if the first two T pol!mei(P,q) = LIAi(P”3~)+bBi(P’.3~~) for 4 > 0. (A4) 
terms in the expansion (43) for Tw - To are used. 

The question now arises as to whether realistic values 
Boundedness as r) ---) 3c requires h = 0. The solution in the 
lower half plane provides a solution linear in r), The heat 

of X, 11 and Pe lead to values of J, representative of flux balance (condition A3) dictates a solution 

the bulk polymer temperature. The following table Ai(PL3q) 

shows some representative values. al-(f) 
for ~20 

II Pl? 
3 +__-- 

I J‘l 3r “I-($ (A% 
(mm) (mm) (mm) using 

2 5000 6 0.25 Ai(0) = 33z’3j T($), Ai’(0) = 3- ““!I-(+). 

It is clear that the difference in temperature measured Inversion can be readily accomplished noting that 

by a thermocouple embedded in an insulator and one s c+ia Ai 

touching the metal surface will only be significant when e-“dt. (A6) 
c-l= 

p (p1’3v) ,+‘;dP = 

the temperature gradient (~?T*/c?y)~ is large. However, 
we earlier decided that values of I to 10Kjmm were 
to be expected for (?T*/?y) and so absolute differences The inversion obtained after using result (A6), the con- 

of order 1 K in TN’ are relevant. With care, such 
volution theorem. and expanding in powers of x yields the 
solution 

differences should be accurately detectable. 
Early experiments in rubber extruders and molds 

shows this to be the case. It is, however. extremely 
difficult to prove experimentally that the wall 
temperature gradients predicted on the basis of the 
measured temperature differences are those that 

x ~([-t)“-‘” 1:: / eeq’dydr. (A7) 

91 
actually arise near metal walls because of the very 
inaccuracies that lead to this present method. Since 

As 4 + 0, we can recover the result of equation (41) since 

the second term in equation (26) namely )Brq*, 
becomes comparable with the first, xOv, within the 
flow channels in question, precise evaluation of so that 

temperature profiles within processing equipment is 
probably as accurately predicted by the use of complex 
theoretical models [I] as by temperature sensors that 

- 
project mto tlowmg streams. (A8) 
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MESURES DE TEMPERATURE A L’AIDE DE THERMOCOUPLES EN PAR01 POUR UN 
ECOULEMENT DE POLYMERE FONDU--I. THEORIE 
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Resume-On suppose rtalise un profil de vitesse plan Ctabli localement independant des variations de 
la temperature de paroi. Deux cas sont consider.& pour les conditions aux limites thermiques sur la 
paroi: (i) paroi parfaitement conductrice c’est a dire temperature fixee et (ii) paroi faiblement conductrice, 
c’est a dire temperature proportionnelle au gradient de temperature. Les variations de temperature de 
paroi qui se produisent en aval d’un changement de la condition (i) a la condition (ii) sont &al&es en 
fonction de la distance aval. pour des valeurs elevees du nombre de P&let. L’application a la mesure 

de la temperature moyenne d’ecoulements de polymeres est discutee. 

TEMPERATURMESSUNG DURCH WANDTHERMOELEMENTE AN 
POLYMERSCHMELZFLUSSEN. I-THEORIE 

Zusammenfassung-Ein voll ausgebildetes ebenes Geschwindigkeitsprofil, das ortlich unabhangig van 
Anderungen der Wandtemperatur ist, wird vorausgesetzt. Fur die Randbedingungen an der Wand 
werden zwei Falle betrachtet: (i) vollkommene Leitung, d.h. feste Temperatur; und (ii) schlechte Warme- 
leitung, d.h. Temperatur,proportional dem Temperaturgradienten. Die Anderung der Wandtemperatur, 
die sich ergibt bei einer Anderung der Randbedingung (i) zur Randbedingung (ii) wird als Funktion des 
Abstandes in Stromungsrichtung fur groBe Werte der PecletGZahl berechnet. Die Anwendung auf 

Messungen der Mitteltemperatur van Polymerstromen wird diskutiert. 

M3MEPEHME TEMl-lEPATYPbl B HOTOKE PACl-IJiABJIEHHOT’O L-IOJ-IHMEPA 
C HOMO~bFO BMOHTHPOBAHHbIX B CTEHY TEPMOHAP - I. TEOPWII 

AHHOT~UHR- ~enaeTC~AO~y~eHAeO~OnHOCTb~pa3BHTOM~AOCKOM~pO~~AeCKO~OCT~,~OKanbHO 
He3aBRCHMOM OT H3MeHeHAii TeMIIepaTypbI CTeHKH. PaccMarpasaroTc5r nsa cnyyan rennonoro 
TpaHM'iHOrO yCAOBAfl Ha CTeHKe: (1)CnyYak a6COnIOTHO npOBOARIUefiCTeHKH,T.e.KOrAaTeMIIepa- 

Typa CTCHKH IIOCTOIlHHa A (2) CJIy'lati IInOXO llpOBOAfllUe8 CTeHKH,T.e. KOrAa TeMllepaTypa CTeHKU 

IlpOtIOpUPiOHanbHa TeMUepaTypHOMy rpaAHeHTy. i'i3MeHeHRe TeMIIepaTypbI CTeHKUBHli3 IlO IIOTOKy 

IlpH IlepeXOAe OT yCJlOBkiR (1) K yCnOBHIO (2) paCCWTbIEIaeTCSI KaK &HKIlEiR paCCTOSlHW4 BH1(3 II0 
noToKy nnn 6onburkixrecen TIeltne. O6Cy~AaeTC5IAcnonb3oBaHHe3THxpe3ynbTaToB nnnn3Mepensi5t 

CpeAHe-MaCCOBOti TeMIIepaTypbI nOTOKOBIlOJNiMepa. 


